Conceptualization and construction of a low-cost and self-made device for monitoring of Particulate Matter: a step-by-step guide.

Authors

  • Giacomo Fanti Department of Science and High Technology, University of Insubria, Como, Italy
  • Francesca Borghi Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
  • Emanuele Cauda 4 Center for Direct Reading and Sensor Technologies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, PA, USA
  • Cody Wolfe Center for Direct Reading and Sensor Technologies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, PA, USA
  • Justin Patts Center for Direct Reading and Sensor Technologies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, PA, USA
  • Carlo Dossi Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy;
  • Andrea Cattaneo Department of Science and High Technology, University of Insubria, Como, Italy
  • Andrea Spinazzè Department of Science and High Technology, University of Insubria, Como, Italy
  • Domenico Maria Cavallo Department of Science and High Technology, University of Insubria, Como, Italy

DOI:

https://doi.org/10.36125/ijoehy.v14i2.500

Abstract

This publication aims to disseminate a step-by-step process that walks through the conceptualization and building of a low-cost (~ $150 monitoring device for airborne fine particulate matter (PM2.5), based on miniaturized sensors and components. Details on the implementation of the hardware and software are provided which facilitate the data acquisition, capture and analysis. The central components and their setup discussed in what follows include: the sensor device (called “P.ALP” – Ph.D. Air quality Low-cost Project), Arduino IDE (Integrated Development Environment) and R code (open-access software). A monitoring device for PM2.5, using low-cost sensors and technologies was successfully conceptualized, designed, and implemented. The P.ALP monitoring system was designed and developed to be a basic device, which can be further customized and implemented using the wide range of low-cost sensors available on the market.

References

Adafruit. (2023). DHT22 Datasheet.

Amazon. (2023). MicroSD Card Adapter.

Analog.com. (2023). DS3231 Datasheet.

Aosong. (2023). DHT22.

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., et al. (2017). High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environmental Science and Technology, 51(12), 6999–7008. https://doi.org/10.1021/acs.est.7b00891

Arduino. (2023a). Arduino Uno.

Arduino. (2023b). Arduino IDE.

Arduino. (2023c). Arduino IDE Instructions.

Arduino. (2023d). Arduino UNO R3 Datasheet.

Boniardi, L., Borghi, F., Straccini, S., Fanti, G., Campagnolo, D., Campo, L., et al. (2021). Commuting by car, public transport, and bike: exposure assessment and estimation of the inhaled dose of multiple airborne pollutants. Atmospheric Environment, 118613. https://doi.org/https://doi.org/10.1016/j.atmosenv.2021.118613

Borghi, F., Fanti, G., Cattaneo, A., Campagnolo, D., Rovelli, S., Keller, M., et al. (2020). Estimation of the inhaled dose of airborne pollutants during commuting: Case study and application for the general population. International Journal of Environmental Research and Public Health, 17(17), 1–14. https://doi.org/10.3390/ijerph17176066

Borghi, F., Spinazzè, A., Campagnolo, D., Rovelli, S., Cattaneo, A., & Cavallo, D. M. (2018). Precision and accuracy of a direct-reading miniaturized monitor in PM 2.5 exposure assessment. Sensors (Switzerland), 18(9). https://doi.org/10.3390/s18093089

Brauer, M., Freedman, G., Frostad, J., Van Donkelaar, A., Martin, R. V., Dentener, F., et al. (2016). Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environmental Science and Technology, 50(1), 79–88. https://doi.org/10.1021/acs.est.5b03709

Brown, D. M., Petersen, M., Costello, S., Noth, E. M., Hammond, K., Cullen, M., et al. (2015). Occupational exposure to PM2.5 and incidence of ischemic heart disease: Longitudinal targeted minimum loss-based estimation. Epidemiology, 26(6), 806–814. https://doi.org/10.1097/EDE.0000000000000329

Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., et al. (2018). Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115(38), 9592–9597. https://doi.org/10.1073/pnas.1803222115

‎CableCreation. (n.d.). USB type C to A cable.

Cauda E, Snawder J, Spinazzè A, Cattaneo A, Howard J, C. D. (2022). The Challenge for Industrial Hygiene 4.0. A NIOSH Perspective on Direct-Reading Methodologies and Real-Time Monitoring in Occupational Environments. The Synergist.

Cauda, E., & Hoover, M. D. (2019). Right Sensors Used Right: A Life-cycle Approach for Real-time Monitors and Direct Reading Methodologies and Data. A Call to Action for Customers, Creators, Curators, and Analysts. | | Blogs | CDC.

Charmast. (n.d.). PowerBank.

Clements, A., Duvall, R., Greene, D., & Dye, T. (2022). The Enhanced Air Sensor Guidebook. Washington, DC.

components101.com. (2023). microSD card adapter Datasheet.

Dorhea. (2023). RTC DS3231.

ElectroCookie. (2023). Solderable BreadBoard.

Elegoo. (2023a). Elegoo Uno R3 Datasheet.

Elegoo. (2023b). Jumper Wires.

Elegoo. (2020). ELEGOO UNO R3.

Fanti, G., Borghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Keller, M., Cattaneo, A., Cauda, E., & Cavallo, D. M. (2021). Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors . https://doi.org/10.3390/s21134513

Fanti, G., Borghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Keller, M., Cattaneo, A., Cauda, E., Cavallo, D. M., et al. (2021). Laboratory evaluation of low-cost optical particle counters for environmental and occupational exposures. Sensors, 21(8), 4513. https://doi.org/10.3390/s21124146

Fanti, G., Cody, W., Borghi, F., Campagnolo, D., Justin, P., Cattaneo, A., et al. (n.d.). In-Lab Testing of a Self-Made Multiparameter Prototype based on Low-Cost Dust sensors using a Marple Camber. Arenzano - GE: 39th Italian Congress of occupational and environmental hygiene.

Fanti, G., Spinazz, A., Borghi, F., Rovelli, S., Campagnolo, D., Keller, M., et al. (2022). Evolution and Applications of Recent Sensing Technology for Occupational Risk Assessment : A Rapid Review of the Literature.

Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F., Westervelt, D. M., et al. (2021). From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. Journal of Aerosol Science, 158(June), 105833. https://doi.org/10.1016/j.jaerosci.2021.105833

Hagan, D., & Kroll, J. (2020). Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmospheric Measurement Techniques Discussions, 1–36. https://doi.org/10.5194/amt-2020-188

Howard, J. (2022). Algorithms and the future of work. American Journal of Industrial Medicine, 65(12), 943–952. https://doi.org/10.1002/ajim.23429

Howard, J., Murashov, V., Cauda, E., & Snawder, J. (2022). Advanced sensor technologies and the future of work. American Journal of Industrial Medicine, 65(1), 3–11. https://doi.org/10.1002/ajim.23300

Jain, S., Presto, A. A., & Zimmerman, N. (2021). Spatial Modeling of Daily PM2.5, NO2, and CO Concentrations Measured by a Low-Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models. Environmental Science and Technology, 55(13), 8631–8641. https://doi.org/10.1021/acs.est.1c02653

Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., et al. (2019). Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506

Koehler, K. A., & Peters, T. M. (2015). New Methods for Personal Exposure Monitoring for Airborne Particles. Current environmental health reports, 2(4), 399–411. https://doi.org/10.1007/s40572-015-0070-z

Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., & Münzel, T. (2019). Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European Heart Journal, 40(20), 1590–1596. https://doi.org/10.1093/eurheartj/ehz135

LocknLock. (n.d.). Airtight Box.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., et al. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116(April), 286–299. https://doi.org/10.1016/j.envint.2018.04.018

Pearce, T., & Coffey, C. (2011). Integrating direct-reading exposure assessment methods into industrial hygiene practice. Journal of Occupational and Environmental Hygiene, 8(5), D31–D36. https://doi.org/10.1080/15459624.2011.569314

Plantower. (2023). PMS5003.

Qianrengyang. (2023). USB type C to B converter.

Qunqi. (2023). Prototype Board.

Ruiter, S., Bard, D., Ben Jeddi, H., Saunders, J., Snawder, J., Warren, N., et al. (2023). Exposure Monitoring Strategies for Applying Low-Cost PM Sensors to Assess Flour Dust in Industrial Bakeries. Annals of Work Exposures and Health, (January), 1–13. https://doi.org/10.1093/annweh/wxac088

Ruiter, S., Kuijpers, E., Saunders, J., Snawder, J., Warren, N., Gorce, J.-P., et al. (2020). Exploring Evaluation Variables for Low-Cost Particulate Matter Monitors to Assess Occupational Exposure. International Journal of Environmental Research and Public Health, 17(22), 8602. https://doi.org/10.3390/ijerph17228602

Sayahi, T., Butterfield, A., & Kelly, K. E. (2019). Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environmental Pollution, 245, 932–940. https://doi.org/10.1016/j.envpol.2018.11.065

Spinazzè, A., Fanti, G., Borghi, F., Buono, L. Del, Campagnolo, D., Rovelli, S., et al. (2017). Field comparison of instruments for exposure assessment of airborne ultrafine particles and particulate matter. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2017.01.054

Taborri, J., Pasinetti, S., Cardinali, L., Perroni, F., & Rossi, S. (2021). Preventing and monitoring work-related diseases in firefighters: A literature review on sensor-based systems and future perspectives in robotic devices. International Journal of Environmental Research and Public Health, 18(18). https://doi.org/10.3390/ijerph18189723

Tan, Y., Lipsky, E. M., Saleh, R., Robinson, A. L., & Presto, A. A. (2014). Characterizing the spatial variation of air pollutants and the contributions of high emitting vehicles in Pittsburgh, PA. Environmental Science and Technology, 48(24), 14186–14194. https://doi.org/10.1021/es5034074

Transcend. (2023). MicroSD Card.

Zimmerman, N. (2022). Tutorial: Guidelines for implementing low-cost sensor networks for aerosol monitoring. Journal of Aerosol Science, 159(September 2021), 105872. https://doi.org/10.1016/j.jaerosci.2021.105872

Zimmerman, N., Li, H. Z., Ellis, A., Hauryliuk, A., Robinson, E. S., Gu, P., et al. (2020). Improving correlations between land use and air pollutant concentrations using wavelet analysis: Insights from a low-cost sensor network. Aerosol and Air Quality Research, 20(2), 314–328. https://doi.org/10.4209/aaqr.2019.03.0124

Downloads

Published

2024-05-13