Application of a short-term method and analysis of atmospheric particulate samples via SEM-EDX

Authors

  • Francesca Borghi Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna
  • Andrea Spinazzè Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Serena Straccini Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Nicholas De Nardis Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Sabrina Rovelli Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Giacomo Fanti Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Alessio Carminati Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Gabriele Carugati Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Daniele Oxoli Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano
  • Maria Antonia Brovelli Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano
  • Sandro Recchia Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Andrea Cattaneo Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como
  • Domenico Maria Cavallo Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como

DOI:

https://doi.org/10.36125/ijoehy.v14i1.488

Keywords:

Rural area, Urban area, Traffic, Particulate Matter, Scanning Electron Microscopy

Abstract

This study aimed to develop a method of short-term sampling (60-120 minutes) and subsequent chemical and morphological analysis of PM (Particulate Matter) by scanning electron microscopy and energy dispersive spectroscopy (SEM-EDX).

The PM samplings (respirable PM fraction - PM4) were carried out through a filter-based technique at a traffic site and a rural site (and related background sites). The analyses of the collected filters, aimed at the chemical and morphological characterization of the particles, were performed via SEM-EDX, after metallization of the sampling.

The applied sampling and analysis methods proved to be adequate for the study conducted and the objectives set. The sampling times used for this study made it possible to obtain a sample characterized by an optimal number of particles for the analysis. The characterization of the sample was therefore complete and exhaustive, making it possible to determine the morphologies and identify the particulate "classes" (in terms of compositional characterization) most present in the investigated sites.

Based on the results of this study, it is possible to state that the choice of a sampling time (60-120 min) shorter than the typical sampling period used in other studies (up to 24h) based on a characterization of the PM via SEM-EDX was a valid choice for the purposes of the analysis. The sampling time of 60-120 minutes was in fact optimal for subsequent analyses, as it made it possible to (i) obtain a heterogeneous and representative sample, (ii) characterized by a PM load suitable to allow a correct chemical-morphology characterization of particles. Starting from the study reported here, one of the possible developments could be that of the application of the experimental design in other contexts, alerted by high temporal variability of exposure concentrations to PM, such as occupational contexts.

References

Agibayeva, A.; Guney, M.; Karaca, F.; Kumisbek, A.; Kim, J.R.; Avcu, E., 2022. Analytical Methods for Physicochemical Characterization and Toxicity Assessment of Atmospheric Particulate Matter: A Review. Sustainability, 14, 13481. https://doi.org/10.3390/ su142013481.

Aharoni, Y., Fallik, E., Copel, A., Gil, M., Grinberg, S., Klein, J. D., 1997. Sodium bicarbonate reduces postharvest decay development on melons. Postharvest Biology and Technology, 10 (3), 201–206.

APAT - Agenzia per la Protezione dell’Ambiente e per i servizi Tecnici, 2004. Linee guida per la predisposizione delle reti di monitoraggio della qualità dell’aria in Italia.

Borghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Del Buono, L., Cattaneo, A., Cavallo, D. M., 2017. Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. International Journal of Environmental Research and Public Health, 14 (8), 909. https://doi.org/10.3390/ijerph14080909.

Campos-Ramos, A., Aragón-Piña, A., Galindo-Estrada, I., Querol, X., Alastuey, A., 2009. Characterization of atmospheric aerosols by SEM in a rural area in the western part of México and its relation with different pollution sources. Atmospheric Environment, 43 (39), 6159–6167. https://doi.org/10.1016/j.atmosenv.2009.09.004.

Chan, D., Stachowiak, G.W., 2004. Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering 218 (9). https://doi.org/10.1243/0954407041856773

Chow, J. C.; Watson, J. G.; Ashbaugh, L. L. & Magliano, K. L.., 2003. Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmospheric Environment. 37, 9–10, 1317 -1340. https://doi.org/10.1016/S1352-2310(02)01021-X.

Farina, F., Sancini, G., Mantecca, P., Gallinotti, D., Camatini, M., Palestini, P., 2011. The acute toxic effects of particulate matter in mouse lung are related to size and season of collection. Toxicology Letters, 202, 209–217.

Genga, A., Baglivi, F., Siciliano, M., Siciliano, T., Aiello, D., Tortorella, C., 2013. Chemical and morphological study of particulate matter analysed by SEM-EDS. 4th IMEKO TC19 Symp. Environ. Instrum. Meas. 2013 Prot. Environ. Clim. Chang. Pollut. Control 43–46.

Hamdan, N.M., Alawadhi, H., Shameer, M., 2021. Characterization of PM2.5 at a traffic site using several integrated analytical techniques. X-Ray Spectrom., 50:106–120. 10.1002/xrs.3201

Hosiokangas, J.; Ruuskanen, J. & Pekkanen, J., 1999. Effects of soil dust episodes and mixed fuel sources on source apportionment of PM10 particles in Kuopio, Finland. Atmospheric Environment. 33 (23), 3821 – 3829. https://doi.org/10.1016/S1352-2310(98)00400-2

Karaca, F., Anil, I., Yildiz, A., 2019. Physicochemical and morphological characterization of atmospheric coarse particles by SEM/EDS in new urban central districts of a megacity. Environmental Science and Pollution Research, 26:24020–24033. https://doi.org/10.1007/s11356-019-05762-2.

Kausar, A., Gull, M., 2014. Effect of Potassium Sulphate on the Growth and Uptake of Nutrients in Wheat (Triticum aestivum L.) Under Salt Stressed Conditions. Journal of Agricultural Science, 6 (8). https://doi.org/10.5539/jas.v6n8p101.

Kelly, F. J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient mparticulate matter. Atmospheric Environment, 60, 504-526.

Lucheta, A. R., Lambais, M. R., 2012. Sulfur in agriculture. Revista Brasileira de Ciência Do Solo, 36 (5), 1369–1379. https://doi.org/10.1590/S0100-06832012000500001.

Ramli, N. A., Yusof, N. F. F. M., Zarkasi, K. Z., Suroto , A., 2021. Chemical , Biological and Morphological Properties of Fine Particles during Local Rice Straw Burning Activities. Int. J. Environ. Res. Public Health, 18, 8192. https:// doi.org/10.3390/ijerph18158192.

Rawat, J., Sanwal, P., Saxena, J., 2016. Potassium and its role in sustainable agriculture. Potassium Solubilizing Microorganisms for Sustainable Agriculture, 235–253. https://doi.org/10.1007/978-81-322-2776-2_17/COVER.

Rout, G. R., Sahoo, S., 2015. Role of irotn in plant growth and metabolism. Reviews in Agricultural Science, 3 (0), 1–24. https://doi.org/10.7831/RAS.3.1

Senbayram, M., Gransee, A., Wahle, V., Thiel, H., 2015. Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop and Pasture Science, 66 (12), 1219–1229. https://doi.org/10.1071/CP15104.

Singh Shivay, Y., 2010. Effect of diammonium phosphate and mussoorie rock phosphate on productivity and economics of potato (Solanum tuberosum)*. Indian Journal of Agricultural Sciences. https://www.researchgate.net/publication/230886472.

Slezakova, K., Pires, J.C.M., Pereira, M.C., Martins, F.G., Alvim-Ferraz, M.C., 2008. Influence of traffic emissions on the composition of atmospheric particles of different sizes-Part 2: SEM-EDS characterization. J. Atmos. Chem. 60, 221–236. https://doi.org/10.1007/s10874-008-9117-y.

Toor, M. D., Adnan, M., ur Rehman, F., Tahir, R., Sulaman Saeed, M., Ullah Khan, A., & Pareek, V., 2021. Nutrients and Their Importance in Agriculture Crop Production: A Review. Ind. J. Pure App. Biosci, 9 (1), 1–6. https://doi.org/10.18782/2582-2845.8527.

Chen, Y., Barak, P., 1982. Iron Nutrition of Plants in Calcareous Soils. Advances in Agronomy, 35 (C), 217–240. https://doi.org/10.1016/S0065-2113(08)60326-0.

Zannoni, D., Valotto, G., Visin, F. & Rampazzo, G., 2016. Sources and distribution of tracer elements in road dust: The Venice mainland case of study”. Journal of Geochemical Exploration, 166, 64 - 72.

Zeb, B., Alam, K., Sorooshian, A., Blaschke, T., Ahmad, I., Shahid, I., 2018. On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol air Qual. Res. 18, 1431–1447. https://doi.org/10.4209/aaqr.2017.09.0340.

Zörb, C., Senbayram, M., Peiter, E., 2014. Potassium in agriculture – Status and perspectives. Journal of Plant Physiology, 171 (9), 656–669. https://doi.org/10.1016/J.JPLPH.2013.08.008.

Published

2024-02-10