Graphene exposure in the workplace: real time measurements and off-line characterisation of airborne particulate matter


  • Francesca Tombolini INAIL-Dipartimento di medicina, epidemiologia, igiene del lavoro e ambientale, Monte Porzio Catone
  • Fabio Boccuni INAIL-Dipartimento di medicina, epidemiologia, igiene del lavoro e ambientale, Monte Porzio Catone
  • Riccardo Ferrante INAIL-Dipartimento di medicina, epidemiologia, igiene del lavoro e ambientale, Monte Porzio Catone
  • Claudio Natale Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza Università di Roma
  • Sergio Iavicoli 3Direzione generale della comunicazione e dei rapporti europei e internazionali, Ministero della salute



few layers graphene, occupational exposure, electron microscopy, Raman spectroscopy


In recent years, graphene-based nanomaterials had the greatest impact in both living and working environments. Different exposure measurement strategies to assess the occupational risk address common issues such as distinguishing engineered nanomaterials from background and using different metrics to consider parameters useful for studying adverse effects on humans. In this work, the integration of real-time high-frequency measurements with electron microscopy and Raman spectroscopy characterisation techniques enabled the characterisation of workers' exposure to airborne graphene during some specific production phases.


Beams, R., Cancado, L. G., & Luca, N. (2015). Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27(8).

Bellagamba, I., Boccuni, F., Ferrante, R., Tombolini, F., Marra, F., Sarto, M. S., & Iavicoli, S.(2020). Workers’ exposure assessment during the production of graphene nanoplatelets in R&D laboratory. Nanomaterials, 10,1520.

Boccuni, F., Ferrante, R., Tombolini, F., Natale, C., Gordiani, A., Sabella, S., & Iavicoli, S. (2020). Occupational exposure to graphene and silica nanoparticles. Part I: workplace measurements and samplings. Nanotoxicology, 14(9), 1280–1300.

Brouwer, D., Boessen, R., Van Duuren-Stuurman, B., Bard, D., Moehlmann, C., Bekker, C., Fransman, W., & Entink, R. K. (2016). Evaluation of Decision Rules in a Tiered Assessment of Inhalation Exposure to Nanomaterials. Annals of Occupational Hygiene, 60(8), 949–959.

Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175(3), 191–199.

Cavallo, D., Ciervo, A., Fresegna, A. M., Maiello, R., Tassone, P., Buresti, G., Casciardi, S., Iavicoli, S., & Ursini, C. L. (2015). Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells. Journal of Applied Toxicology, 35(10), 1102–1113.

Chen, L., Hernandez, Y., Feng, X., & Müllen, K. (2012). From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angewandte Chemie - International Edition, 51(31), 7640–7654.

Convertino, D., Rossi, A., Miseikis, V., Piazza, V., & Coletti, C. (2016). Thermal decomposition and chemical vapor deposition: A comparative study of multi-layer growth of graphene on SiC(000-1). MRS Advances, 1(55), 3667–3672.

D’Alessandro, A., Lucarelli, F., Mandò, P. A., Marcazzan, G., Nava, S., Prati, P., Valli, G., Vecchi, R., & Zucchiatti, A. (2003). Hourly elemental composition and sources identiÿcation of ÿne and coarse PM10 particulate matter in four Italian towns. Journal of Aerosol Science, 34, 243–259.

Das, A., Chakraborty, B., & Sood, A. K. (2008). Raman spectroscopy of graphene on different substrates and influence of defects. Bulletin of Materials Science, 31, 579–584.

Del Rio Castillo, A. E., V. Pellegrini, A. Ansaldo, F. Ricciardella,H. Suna, L. Marasco, J. Buha, et al. 2016. “High-yield production of 2D crystals by wet-jet milling, in: Technology”. Patent no. PCT/IB2016/057108

Del Rio Castillo, A. E., Pellegrini, V., Ansaldo, A., Ricciardella, F., Sun, H., Marasco, L., Buha, J., Dang, Z., Gagliani, L., Lago, E., Curreli, N., Gentiluomo, S., Palazon, F., Prato, M., Oropesa-Nuñez, R., Toth, P. S., Mantero, E., Crugliano, M., Gamucci, A., … Bonaccorso, F. (2018). High-yield production of 2D crystals by wet-jet milling. Materials Horizons, 5(5), 890–904.

Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., Evariste, L., Gauthier, L., Koivisto, A. J., Vogel, U., Martín, C., Delogu, L. G., Buerki-Thurnherr, T., Wick, P., Beloin-Saint-Pierre, D., Hischier, R., Pelin, M., Candotto Carniel, F., Tretiach, M., … Bianco, A. (2018). Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 12(11), 10582–10620.

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97(18), 1–4.

Ferrari, A. C., & Robertson, J. (2001). Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64(7), 075414.

Gao, X., & Lowry, G. V. (2018). Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact, 9(September 2017), 14–30.

Guarnieri, D., Sánchez-Moreno, P., Del Rio Castillo, A. E., Bonaccorso, F., Gatto, F., Bardi, G., Martín, C., Vázquez, E., Catelani, T., Sabella, S., & Pompa, P. P. (2018). Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. Small, 14(24), 1–11.

Hawaldar, R., Merino, P., Correia, M. R., Bdikin, I., Grácio, J., Méndez, J., Martín-Gago, J. A., & Singh, M. K. (2012). Large-area high-throughput synthesis of monolayer graphene sheet by Hot filament thermal chemical vapor deposition. Scientific Reports, 2, 2–10.

Heitbrink, W., Lo, L.-M., & Dunn, K. (2015). Exposure Controls for Nanomaterials at Three Manufacturing Sites. Journal of Occupational and Environmental Hygiene, 12(1), 16–28.

Hinds, W. (1999). Aerosol Technology_ Properties, Behavior, and Measurement of Airborne Particles (Wiley (ed.)).

International Commission on Radiological Protection (ICRP). (1994). Human Respiratory Tract Model for Radiological Protection. Annals of the ICRP, 24(1–3), 1–482.

ISO (2014). Nanotechnologies - Occupational risk management applied to engineered nanomaterials - part 2: Use of the control banding approach. ISO/TS 12901-2.

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.

Lee, H. S., Balasubramanian, B., Gopalakrishna, G. V. T., Kwon, S. J., Karthick, S. P., & Saraswathy, V. (2018). Durability performance of CNT and nanosilica admixed cement mortar. Construction and Building Materials, 159(January), 463–472.

Lee, J. H., Han, J. H., Kim, J. H., Kim, B., Bello, D., Kim, J. K., Lee, G. H., Sohn, E. K., Lee, K., Ahn, K., Faustman, E. M., & Yu, I. J. (2016). Exposure monitoring of graphene nanoplatelets manufacturing workplaces. Inhalation Toxicology, 28(6), 281–291.

Lee, Y. S., Sung, J. H., Song, K. S., Kim, J. K., Choi, B. S., Yu, I. J., & Park, J. D. (2019). Derivation of occupational exposure limits for multi-walled carbon nanotubes and graphene using subchronic inhalation toxicity data and a multi-path particle dosimetry model. Toxicology Research, 8(4), 580–586.

Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87.

McCormick, S., Niang, M., & Dahm, M. M. (2021). Occupational Exposures to Engineered Nanomaterials: a Review of Workplace Exposure Assessment Methods. Current Environmental Health Reports, 8(3), 223–234.

Mihalache, R., Verbeek, J., Graczyk, H., Murashov, V., & van Broekhuize, P. (2016). Occupational exposure limits for manufactured nanomaterials , a systematic Occupational exposure limits for manufactured nanomaterials , a systematic review. Nanotoxicology.

Netkueakul, W., Korejwo, D., Hammer, T., Chortarea, S., Rupper, P., Braun, O., Calame, M., Rothen-Rutishauser, B., Buerki-Thurnherr, T., Wick, P., & Wang, J. (2020). Release of graphene-related materials from epoxy-based composites: Characterization, quantification and hazard assessment: In vitro. Nanoscale, 12(19), 10703–10722.

Novoselov, K., Geim, A., Morozov, S., Zhang, Y., Dubonos, S., Grigorieva, I., & Firsov, A. (2004). Electric Field Effect in atomically thin carbon films. Science, 22(5696), 2–6.

Oberbek, P., Kozikowski, P., Czarnecka, K., Sobiech, P., Jakubiak, S., & Jankowski, T. (2019). Inhalation exposure to various nanoparticles in work environment—contextual information and results of measurements. Journal of Nanoparticle Research, 21(11).

OECD. (2015). Harmonized tiered approach to measure and assess the potential exposure to airborne emissions of engineered nano-objects and their agglomerates and aggregates at workplaces. Series on the Safety of Manufactured Nanomaterials, 55(19), 1–51.

OECD. (2017). Strategies, Techniques and Sampling Protocols for Determining the Concentrations of Manufactured Nanomaterials in Air At the Workplace. Series on the Safety of Manufactured Nanomaterials, 82(30), 1–155.

Pelin, M., Sosa, S., Prato, M., & Tubaro, A. (2018). Occupational exposure to graphene based nanomaterials: Risk assessment. Nanoscale, 10(34), 15894–15903.

Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L. B., Zhan, X., Gao, G., Vithayathil, S. A., Kaipparettu, B. A., Marti, A. A., Hayashi, T., Zhu, J. J., & Ajayan, P. M. (2012). Graphene quantum dots derived from carbon fibers. Nano Letters, 12(2), 844–849.

Schinwald, A., Murphy, F. A., Jones, A., MacNee, W., & Donaldson, K. (2011). Graphene-based nanoplatelets:a new risk to the respiratorysystem as a consequence of their unusual aerodynamic properties. ACS Nano, 6(1), 736–746.

Schulte, P. A., Geraci, C. L., Murashov, V., Kuempel, E. D., Zumwalde, R. D., Castranova, V., Hoover, M. D., Hodson, L., & Martinez, K. F. (2014). Occupational safety and health criteria for responsible development of nanotechnology. Journal of Nanoparticle Research Research, 16(2153).

Spinazzè, A., Cattaneo, A., Borghi, F., Del Buono, L., Campagnolo, D., Rovelli, S., & Cavallo, D. M. (2019). Probabilistic approach for the risk assessment of nanomaterials_ A case study for graphene nanoplatelets. International Journal of Hygiene and Environmental Health, 222(1), 76–83.

Su, W. C., Ku, B. K., Kulkarni, P., & Cheng, Y. S. (2016). Deposition of graphene nanomaterial aerosols in human upper airways. Journal of Occupational and Environmental Hygiene, 13(1), 48–59.

Sun, H., Del Rio Castillo, A. E., Monaco, S., Capasso, A., Ansaldo, A., Prato, M., Dinh, D. A., Pellegrini, V., Scrosati, B., Manna, L., & Bonaccorso, F. (2016). Binder-free graphene as an advanced anode for lithium batteries. Journal of Materials Chemistry A, 4(18), 6886–6895.

Tombolini, F., Boccuni, F., Ferrante, R., Natale, C., Marasco, L., Mantero, E., Del Rio Castillo, A. E., Leoncino, L., Pellegrini, V., Sabella, S., & Iavicoli, S. (2021). An integrated and multi-technique approach to characterize airborne graphene flakes in the workplace during production phases. Nanoscale, 13(6), 3841–3852.

Ursini, C. L., Fresegna, A. M., Ciervo, A., Maiello, R., Del Frate, V., Poli, D., Folesani, G., Buresti, G., Di cristo, L., Sabella, S., Malvindi, maria A., & Iavicoli Sergio. (2020). 2020_Cavallo_Lav biomonit IIT 2020 Dultima. Nanotoxicology, Submitted.

Yeganeh, B., Kull, C. M., Hull, M. S., & Marr, L. C. (2008). Characterization of airborne particles during production of carbonaceous nanomaterials. Environmental Science and Technology, 42(12), 4600–4606.

Zhang, B., Wang, Y., & Zhai, G. (2016). Biomedical applications of the graphene-based materials. Material Science and Engineering: C, 61, 953–964.