Interactions between physical and chemical agents in the assessment of occupational exposure

Authors

  • Flavia Buonaurio Università Sapienza - Dipartimento di Chimica- Roma
  • Daniela Pigini INAIL Dipartimento di Medicina, Epidemiologia ed Igiene del Lavoro, Centro Ricerche di Monte Porzio Catone (RM)
  • Enrico Paci INAIL Dipartimento di Medicina, Epidemiologia ed Igiene del Lavoro, Centro Ricerche di Monte Porzio Catone (RM)
  • Renata Sisto INAIL Dipartimento di Medicina, Epidemiologia ed Igiene del Lavoro, Centro Ricerche di Monte Porzio Catone (RM)
  • Monica Gherardi INAIL Dipartimento di Medicina, Epidemiologia ed Igiene del Lavoro, Centro Ricerche di Monte Porzio Catone (RM)
  • Enrico Marchetti INAIL Dipartimento di Medicina, Epidemiologia ed Igiene del Lavoro, Centro Ricerche di Monte Porzio Catone (RM)
  • Mariangela Spagnoli INAIL Dipartimento di Medicina, Epidemiologia ed Igiene del Lavoro, Centro Ricerche di Monte Porzio Catone (RM)
  • Ottavia Gianpaoli NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome
  • Alfredo Micheli Department of Environmental Biology, Sapienza University of Rome
  • Federico Marini Università Sapienza, Dipartimento di Chimica, Moro Roma
  • Giovanna Tranfo INAIL Dipartimento di Medicina, Epidemiologia ed Igiene del Lavoro, Centro Ricerche di Monte Porzio Catone (RM)

DOI:

https://doi.org/10.36125/ijoehy.v12i1.393

Keywords:

occupational exposure; human biomonitoring; physical agents; chemical agents; interactions.

Abstract

In the assessment of occupational risks, many possible sources are present, that can be grouped as chemical, physical and biological. When chemical and physical risk agents are present simultaneously, their interaction can lead to an increase in the adverse health effect on the exposed workers. In the present work three cases have been studied, that are examples of this phenomenon.

The study concerned the simultaneous exposure to noise and volatile organic compounds in a fiberglass manufacturing company, the exposure to plant protection products in correlation with the microclimate inside a greenhouse and the exposure of divers to hyperbaric atmospheres in correlation with physical exercise.

Exposure was assessed by means of biological monitoring, measuring biological dose (where possible) and effect biomarkers. The results of the study on the fiberglass workers showed that they are exposed to styrene levels (a carcinogenic and ototoxic agent) close to occupational limit values. The tests based on otoacoustic emissions (effect biomarker of hearing damage) are able to discriminate between workers and controls.

Divers are exposed simultaneously to an increased partial pressure of oxygen by inhalation and to an increased pressure of water on the whole body. This process could induce oxidative stress. Oxidative stress to nucleic acids can be assessed measuring the oxidation products of guanine in RNA and DNA. The results show an increase in urinary excretion of 8-oxy-7,8-dihydroguanosine and 8-oxy -7,8-dihydro-2'-deoxyguanosine, after 2.5 - 4 hours from the start of the experiment. The results of an untargeted NMR metabolomic analysis show that the urinary concentration of hypoxanthine, a metabolite of purine metabolism associated with physical exercise, also increases during the underwater experiment.

In the study of the possible increase in dermal exposure correlated to the microclimatic conditions of the greenhouse, an "instant" risk index between 0 and 100 was defined. It refers to the probability of cutaneous intake of pesticides, based on the level of sweating as a function of the temperature, relative humidity and solar radiation inside the greenhouse, with consequent damage to the skin "barrier" function.

The experimental results on skin barrier alterations confirm an increase in the risk index inside the greenhouse due to the microclimatic conditions. These conditions favour the persistence of pesticides on the skin and increase the risk of dermal absorption.

The result of these studies showed how Biological Monitoring can be used to assess exposure both to chemical and physical agents, and to their possible synergy.

References

Aquilano k., Baccolo T. P., Bersani A. M., Bordi M., Buonaurio F., Businaro R., Cerocchi C., Costanzo C., De Angelis N., De Pità O., D’Ovidio M. C., Fattorini L., Filomeni G., Ieno C., Lettieri Barbato D.,Maggi E., Marchetti E., Marchetti M. R., Melis P., Miccheli A., Giampaoli O.,Paci E., Pigini D., Pinto A., Sacco F.,Sciubba F., Spagnoli M., Summa A., Tomassini A., Tosti M. E., Tranfo G., Turchi R.,Valente G., Hyperbaric Exposure and Oxidative Stress in occupational activities (HEOxS): the study protocol, Senses Sci (Educ Sci Tech) 2021: 8 (1)1212-1229, doi: 10.14616/sands-2021-1-12121229.

Boycott, A. E., Damant, G. C. C., Haldane, J. S., 1908. The Prevention of Compressed-air Illness.

Cadet, J.; Loft, S.; Olinski, R.; Mark, D.; Evans, M.D.; Bialkowski, K.; Wagner, J.R.; Dedon, P.C.; Møller, P.; Greenberg, M.M.; et al. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic. Res. 2012, 46, 367–381.

Cooke, M.S.; Olinski, R.; Loft, S. Measurement and Meaning of Oxidatively Modified DNA Lesions in Urine. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3–14. J Hyg (Lond). 8(3): 342–443. doi: 10.1017/s0022172400003399.

Fabrizi G., Barrese E., Scarpelli M.L., Gherardi M. Prevenzione e protezione dei lavoratori nell’utilizzo di pesticidi in agricoltura. INAIL. Quaderni della Rivista degli infortuni e delle malattie professionali. Agricoltura: salute e sicurezza sul lavoro a 100 anni dall’introduzione della tutela assicurativa. Tipografia INAIL, Maggio 2017. ISSN 0035-5836.

Krebs B., Maasfeld W. Schrader J., Wolf R., Hoernicke E., Nolting H. G., Backhaus G. F., Westphal D. 2000. Uniform Principles for Safeguarding the Health of Workers Re-entering Crop growing Areas after Application of Plant Protection Products

Li, Z.; Wu, J.; DeLeo, C.J. RNA Damage and Surveillance under Oxidative Stress. IUBMB Life 2006, 58, 581–588.

M. Uguen, R. Pougnet, A. Uguen, B. Loddé, J.D. Dewitte, Dysbaric osteonecrosis among professional divers: A literature review, UHM 2014, Vol. 41, No. 6.

M.D. Evans, M. Saparbaev, M.S. Cooke, DNA repair and the origins of urinary oxidized 2’- deoxyribonucleosides, Mutagenesis 25 (2010) 433–442.

Sisto, R., Cerini, L., Gatto, M. P., Gherardi, M., Gordiani, A., Sanjust, F., Paci, E., Tranfo, G., and Moleti, A., 2013. Otoacoustic emission sensitivity to exposure to styrene and noise.J. Acoust. Soc. Am. 134 (5), pp. 3739- 3748.

Tranfo G., Gherardi M., Paci E., et al., Occupational exposure to styrene in the fiberglass reinforced plastic industry: a comparison between two different manufacturing processes. Med Lav, 103(5): 402 – 412 (2012).

Tranfo G., Paci E., Carrieri M., Marchetti E., Sisto R., Gherardi M., Costabile F., Bauleo L., Ancona C. and Pigini D. Levels of Urinary Biomarkers of Oxidatively Generated Damage to DNA and RNA in Different Groups of Workers Compared to General Population. Int. J. Environ. Res. Public Health 2019, 16, 2995; doi:10.3390/ijerph16162995.

Van Hemmen J.J., Chester G,, Hamey P,, Kangas J,, Kirknel E,, Maasfeld W,, Perkins J,, Phillips J,, Schulze-Rosario C. Post-Application Exposure of Workers to Pesticides in Agriculture, Report of the Re-entry Working Group, EUROPOEM II Project, FAIR3-CT96-1406, December 2002

Published

2022-03-15