Carbon dioxide concentration assessment as indoor air quality requirment and prevention measure

Authors

  • Pierangelo Tura ARPA Piemonte
  • Giovanni D’Amore ARPA Piemonte, Alessandria

DOI:

https://doi.org/10.36125/ijoehy.v11i4.390

Keywords:

carbon dioxide, indoor air quality

Abstract

Indoor air quality (IAQ) is the air quality within home environments and indoor workplaces. At such workplaces no tasks involving hazardous substances are performed. IAQ could be affected by many substances like gases (carbon monoxide, VOC, etc.), particulates, microbial contaminants, and other substances that can induce adverse health conditions. However, the most important factor affecting IAQ is the anthropogenic pollution which is correlated to the number of occupants and their activities. This kind of indoor workplace includes many working environments such as officies, schools, hospitals, sales areas, etc.

The interest in the indoor air quality is growing during the years for the risk and discomfort due to exposure of the occupants to indoor air pollutants.

Differential indoor-outdoor carbon dioxide concentration is selected as the most adequate descriptor index to evaluate indoor air quality. European standards EN 16798-1 establishes acceptable values for this quantity as a function of the IAQ class. Low differential CO2 concentrations correspond to high class indoor air quality, the other way around high concentrations indicate low class quality. This indoor environment classification method, based on comparison of a single value of CO2 concentration appears as a limiting approach. Real time knowledge of CO2 concentration values provides more information on indoor environmental parameters affecting IAQ.

For example, the growth of CO2 concentration with the time is related to the ventilation rates, the maximum number of occupants as a function of activities to be performed, the air infiltrations through the fixtures, etc. All these environmental features can be evaluated both by field measurements of the CO2 concentration in real building and researching design solutions.

In this paper some examples and case studies regarding both home and working environments will be showed. Analisys of these case studies will point out as CO2 concentration represent a good index to evaluate both comfort and risk assesment of the building occupants. Furthermore CO2 concentration represent, above all, a simply and valuable instruments to manage working place and carry out effective prevention measures in the field of occupational hygiene and health of the indoor environments. These measures become very important in the natural ventilated indoor spaces, where it is necessary to define organizational procedures to improve air ventilation.

Finally in the last part of this paper we will show as the monitoring of the CO2 concentration, could be a good practice to minimize airborne transmissio risk of SARS-CoV-2 in indoor environment. For this purpose the results of some studies recently published on scientific journals will be discussed.

References

AiCARR – Associazione Italiana Condizionamento dell’Aria Riscaldamento Refrigerazione.

https://www.aicarr.org/Pages/Normative/FOCUS_COVID-19_IT.aspx

Ultimo accesso 08/08/2021.

Ainsworth B., Haskell W., Hermann S., et al. The compendium of physical activities tracking guide. Healthy Lifestyles Research Center, College of Nursing & Health Innovation, Arizona State University. 2011.

https://sites.google.com/site/compendiumofphysicalactivities/

Ultimo accesso 08/08/2021.

ANSI/ASHRAE Standard 62.1. Ventilation for Acceptable Indoor Air Quality. American National Standard Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2013.

ASHRAE. Fundamentals Handbook. Atlanta: GA, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc; 2013.

ASTM, 2012. Standard Guide for using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation. West Conshohocken, PA: American Society for Testing and Materials, (D6245-07).

Batterman S., 2017. Review and Extension of CO2-Based Methods to Determine Ventilation Rates with Application to School Classrooms. Int. Journ. of Env. Res. and Public Helth, 13(2): 145, febbraio 2017.

Bearg D.W., 1998. Improving indoor air quality through the use of continual multipoint monitoring of carbon dioxide and dew point. Am. Ind. Hyg. Assoc. J., 59(9):636 – 41. Settembre 1998.

Bonino S., 2016. Carbon Dioxide Detection and Indoor Air Quality Control. Occup. Health Saf. – 85(4):46-8. Aprile 2016.

Buonanno G., Morawska L., Stabile L., 2020b. Quantitative Assessment of the Risk of Airborne Transmission of SARS-CoV-2 Infection: Prospective and Retrospective Applications. Environment International.

https://doi.org/doi:10.1101/2020.06.01.20118984

Ultimo accesso 09/08/2021.

Buonanno G., Stabile L., Morawska L. 2020a. Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International 141, 105794.

https://doi.org/doi:10.1016/j.envint.2020.105794

Ultimo accesso 09/08/2021.

Burge P.S., 2004. Sick building syndrome. Occup. Environ. Med. – 61 (2): 185 – 90. Febbraio 2004.

Decreto Legislativo 9 aprile 2008, n. 81, Testo Unico sulla Salute e Sicurezza sul Lavoro. “Attuazione dell’articolo 1 della legge 3 agosto 2007, n.123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro”. G.U.R.I. n.101 del 30.04.2008, S.O. n.108/L, e s.m.i.

Del Casale A., Ferracuti S., Mosca A., Pomes L. M., Fiasché F., Bonanni L., Borro M., Gentile G., Martelletti P., Simmaco M., 2020. Multiple Chemical Sensitivity Syndrome: a principal component analysis of symptoms. Int. J. Environ. Res. Public Health – 17 (18):6551, settembre 2020.

del Gaudio M., Freda D., Lenzuni P., 2010. La qualità dell’aria in ambienti antropizzati – descrittore e valori limite. Italian Journal of Occupational and Enviromental Hygiene – Vol. 1, n. 1 –2010.

de Oliveira P.M., Mesquita L.C.C., Gkantonas S., Giusti A., and das Mastorakos E., 2021. Evolution of spray and aerosol from respiratory releases: theoretical estimatesfor insight on viral transmission. Proceedings of the Royal Society A, Vol. 477, Issue2245, January 2021.

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0584

Ultimo accesso 11/08/2021.

Freda D., del Gaudio M., Lenzuni P., 2006. La qualità dell’aria nelle scuole. Atti del Covegno dBA 2006 – Modena 12 – 13 ottobre 2006. Vol. 2: Microclima, 114 - 125.

Gammaitoni L., Nucci M.C., 1997. Using a mathematical model to evaluate the efficacy of TB control measures. Emerging Infectous Diseases, 3, 335–342.

Gruppo di Lavoro Ambiente-Rifiuti Covid-19. Indicazioni sugli impianti di ventilazione/climatizzazione in strutture comunitarie non sanitarie e in ambienti domestici in relazione alla diffusione del virus SARS-CoV-2. Rapporto ISS COVID-19 – n.33/2020. Versione 25 maggio 2020.

Gruppo di Lavoro ISS Ambiente e Qualità dell’Aria Indoor. Indicazioni ad interim per la prevenzione e gestione degli ambienti indoor in relazione alla trasmissione dell’infezione da virus SARS-CoV-2. Rapporto ISS COVID-19 – n.11/2021. Versione 18 aprile 2021.

https://www.salute.gov.it/portale/temi/p2_5.jsp?lingua=italiano&area=indor&menu=salute

Ultimo accesso 08/08/2021.

https://airborne.cam/

Ultimo accesso 11/08/2021.

https://airborne.cam/airbornedotcam.pdf

Ultimo accesso 11/08/2021.

Indicazioni strategiche ad interim per la prevenzione e il controllo delle infezioni da SARS-CoV-2 in ambito scolastico (a.s. 2021-2022). Istituto Superiore di Sanità, Ministero della Salute, INAIL, Fondazione Bruno Kessler – 1 settembre 2021.

Knibbs L.D., Morawska L., Bell S.C., Grzybowski P., 2011. Room ventilation and the risk of airborne infection transmission in 3 health care settings within a large teaching hospital. American Journal of Infection Control, 39, 866–872.

Linee Guida. Microclima, aerazione e illuminazione nei luoghi di lavoro. Requisiti standard. Indicazioni operative e progettuali. Coordinamento Tecnico per la sicurezza nei luoghi di lavoro delle Regioni e delle Provincie autonome in collaborazione con ISPESL, 2006.

Mahyuddin N., Awbi H., Alshitawi M., 2008. Investigating carbon dioxide in high occupancy buildings with particular application to classrooms. The 11th International Conference on Indoor Air Quality and Climate - Copenhagen, Denmark.

Memmolo G., Piccolo C., Campitelli I., Luciano R., Marotta F., del Gaudio M., 2015. Gli alunni misurano la scuola. Condizioni termoigrometriche e di qualità dell’aria nelle scuole primarie della provincia di Avellino. Atti del Covegno dBA 2015 – Modena 27 maggio 2015, 117 - 123.

Persily A. 2018. Development of an Indoor Carbon Dioxide Metric. 39th AIVC Conference “Smart Ventilation for Buildings”, Antibes Juan-les-Pins, France, 791-800. 18-19 September 2018.

Persily A., de Jonge L., 2017. Carbon dioxide generation rates for building occupants. Indoor Air – International Journal of Indoor Environment and Health, Volume 27, Issue 5: 868-879.

Persily A.K., 1997. Evaluating building IAQ and Ventilation with indoor carbon dioxide. ASHRAE Transactions, 103 (2), 193-204.

Persily A., Dols W., Emmerich S., Ng L., 2019. The Role of Carbon Dioxide in ventilation and IAQ Evaluation: 40 years of AIVC. 40th Air Infiltration and Ventilation Centre Conference, 8-9 ottobre Ghent.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=928797

Ultimo accesso 20/12/2021.

Proietti L., Giarrusso S., Longo B., Origlio A., Gulino S., Risicato A., Sandonà P.B., Duscio D., 2004. Sick Building Syndrome in uffici pubblici. Atti del 21° Convegno Nazionale AIDII, 371 – 374.

Seltzer J.M., 1994. Building-related illnesses. L. Allergy Clin. Immunol. – 94 (2 Pt 2): 351-61. Agosto 1994.

Settimo G., 2019. La qualità dell’aria indoor e le attività del Gruppo di Studio Nazionale (GdS) Inquinamento Indoor dell’Istituto Superiore di Sanità. Atti del 25° Convegno di Igiene Industriale, 219 – 223. Corvara (BZ), 27 – 29 marzo 2019.

UNI EN ISO 16798-1, Prestazione energetica degli edifici – Ventilazione per gli edifici – Parte 1: Parametri di ingresso dell’ambiente interno per la progettazione e la valutazione della prestazione energetica degli edifici in relazione alla qualità dell’aria interna, all’ambiente termico, all’illuminazione e all’acustica, Ente Nazionale Italiano di Unificazione, Milano, 2019.

UNI EN ISO 8996, Ergonomia dell’ambiente termico – Determinazione del metabolismo energetico, Ente Nazionale Italiano di Unificazione, Milano, 2005.

UNI EN ISO 16000-26:2012, Aria in ambienti confinati – Parte 26: Strategia di campionamento per l’anidride carbonica (CO2), Ente Nazionale Italiano di Unificazione, Milano, 2012.

UNI 10339, Impianti aeraulici a fini di benessere – Generalità, classificazione e requisiti. Regole per la richiesta d’offerta, l’ordine e la fornitura. Ente Nazionale Italiano di Unificazione, Milano – 1995.

Verbale n.90 del 24/06/2020, Verbale n.94 del 07/07/2020 del Comitato Tecnico Scientifico (istituito con Decreto del Capo Dipartimento della Protezione civile n. 371 del 5 febbraio 2020).

World Health Organization, 2010. WHO Guidelines for indoor air quality: selected pollutants. Copenhagen.

Published

2021-12-01