Main interfering in spectroscopic analysis for the determination of asbestos containing materials


  • Angelo Olori INAIL-Research Area, Department of Medicine, Epidemiology, Occupational and Environmental Hygiene- Rome
  • Pierino Di Pietro A.R.T.A Agenzia Regionale Tutela Ambiente della Regione Abruzzo- Teramo
  • Antonella Campopiano INAIL-Research Area, Department of Medicine, Epidemiology, Occupational and Environmental Hygiene- Rome



FTIR, chrysotile, kaolin, kaolinite, interferences


Infrared Spectroscopy (FTIR) is widely used as a technique for the analysis of asbestos containing materials (ACM). It is complementary to microscopic analyzes. It is capable of detecting asbestos even in small quantities and in complex matrices. Often, during the analyzes, the critical aspects of the presence of interfering substances in the commercial artifacts are neglected. It is easy in this type of analysis to make interpretive errors defined as false positives: then locate asbestos in asbestos-free samples. The FTIR analysis of an ACM must always be associated with a morphological analysis of the sample by means of optical microscopy that allows identification of the fibrous forms of the sample. The aim of this paper is to study the main interferences present in commercial materials in spectroscopic analyzes. In the analysis of commercial matrices where there are some minerals such as kaolin containing kaolinite and/or similar lithotypes (for example, dickite, halloysite, nacrite) it is essential to study the analytical peaks of the interferences and compare them to those of the chrysotile. Kaolinite and kaolin were used in the production of artifacts, especially in vinyl tiles, false ceilings and similar materials.

From the spectra analyzed in this study it is understood that the analytical error is due to an inexperienced operator who has not carefully analyzed the frequencies and the spectral peaks present.


Anbalagan G., Sivakumar G., Prabakaran A.R., Gunasekaran S., 2009. Spectroscopic characterization of natural chrysotile. Vibrational Spectroscopy; 52, 122-127.

Bishop J.L., Lane M.D., Dyar M.D., Brown A.J., 2008. Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals; 43, 35-54.

Bhaskar J. Saikia, Gopalakrishnarao Parthasarathy, 2010. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys.; 1, 206-210.

Cheng H., Yang J., Liu Q., Zhang J., Frost R.L., 2010. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite-A mid-infrared and near-infrared study. Spectrochimica Acta; Part A, 77, 856-861.

Della Ventura G., 1992. Recent developments in the synthesis and characterization of amphiboles. Synthesis and crystal-chemistry of richterites. Trends in Mineralogy; 1, 153-192.

Di Pietro, Campanella M., Pierannunzi C., Marcozzi Rozzi M. D., 2005. Determination of Asbestos in vynil floor tiles by FT-IR technique. International Conference on “Asbestos Monitoring and Analytical Methods†(Amam).

Gunasekaran S., Anbalagan G., Pandi S., 2006. Raman and infrared spectra of carbonates of calcite structure. Journal of raman spectroscopy; 37, 892-899.

Mendelovici E., Frost R. L., 2005. Pioneer studies on HCl and silylation treatments of chrysotile. Journal of Colloid and Interface Science; 289, 597-599.

Mohammad A. Qtaitat, Ibrahim Naji Al-Trawneh, 2005. Characterization of kaolinite of the Baten El-Ghoul region/south Jordan by infrared spectroscopy. Spectrochimica Acta; Part A, 61, 1519-1523.

Olori A., Campopiano A., Cannizzaro A., Basili F., Boccanera S., Capone P.P., Michienzi F., 2007. Determinazione qualitativa del crisotilo in matrici viniliche mediante spettroscopia infrarossa in riflettanza diffusa. Giornale degli Igienisti Industriali; 32(3), 216-225.

Ristic M., Czakò-Nagy I., Music S., Vertes A., 2010. Spectroscopic characterization of chrysotile asbestos from different regions. Journal of Molecular Structure; 993, 120-126.

Pierini N., Olori L., Giovagnone D., Paglia F., Morgia P., 1995. La riflettanza nel vicino infrarosso (NIRs), una tecnica non distruttiva di definizione della purezza dell’acido pipemidico. Bollettino Chimico Farmaceutico; 134, 434-447.

Prost R., Dameme A., Huard E., Driard J., Leydecker J.P., 1989. Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K. Clays and Clay Minerals; 37, 5, 464-468.

Van der Marel., Beutelspacher H., 1976. Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier.

VDI, 2001. Determination of asbestos in technical products Infrared spectroscopy method. Germany; blatt 2, part 2.