Monitoring and georeferencing of personal exposure to atmospheric particulate

Luca Del Buono, Davide Campagnolo, Marta Keller, Andrea Spinazzè, Sabrina Rovelli, Francesca Borghi, Andrea Cattaneo, Valentina Bollati, Domenico Maria Cavallo

Abstract


Exposure to airborne particulate matter (PM) in urban environments is characterized by high spatial and temporal variability, due to the interaction of anthropic and environmental factors. The aim of this study was to develop a protocol for continuous monitoring of personal exposure to PM and for the contextual analysis of the position of selected subjects for short urban routes. The personal exposure to PM2.5 and PM10 of selected subjects was determined by a direct-reading instrument (photometer), associated with a GPS system, to geo-reference of the exposure data along each individual path. The results - here referred specifically to two of the monitored subjects - showed that the proposed approach allows to analyze the time course of exposure to PM, and thus to precisely identify and quantify possible exposure peaks. This approach, if applied to a wider number of subjects, would allow to analyze the spatial variability of PM in the investigated area, and hence to identify possible hot-spots of PM exposure in the urban area and low-impact paths for personal exposure to PM.


Keywords


personal exposure; PM 2,5; PM 10; GPS; Georeferencing

Full Text:

PDF (Italiano)

References


Adam, M., Schikowski, T., Carsin, A. E., et al. 2015. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. Eur. Respir. J., 45(1), 38-50.

Adams, H. S., Nieuwenhuijsen, M. J., Colvile, R. N., McMullen, M. A. S., & Khandelwal, P. 2001. Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci. Tot. Environ. 279(1), 29-44.

Bollati, V., Iodice, S., Favero, C., et al. 2014. Susceptibility to particle health effects, miRNA and exosomes: rationale and study protocol of the SPHERE study. BMC public health, 14(1), 1137.

Bonzini, M., Pergoli, L., Cantone, L., et al. 2017. Short-term particulate matter exposure induces extracellular vesicle release in overweight subjects. Environ. Res. 155, 228-234.

Brook, R.D., Rajagopalan, S., Pope, C.A., et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121: 2331–2378.

Cartenì, A., Cascetta, F., & Campana, S. 2015. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 101, 328-337.

Cattani, G., Gaeta, A., di Bucchianico, A.D.M., et al. 2017. Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy. Atmos. Environ. 156, 52-60.

Cohen, A. J., Brauer, M., Burnett, R. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907-1918.

Colombi, C., Angius, S., Gianelle, V., & Lazzarini, M. 2013. Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 70, 166-178.

Dias, D., Tchepel, O. 2014. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach. Environ. Sci. Pollut. Res. 21(5), 3558-3571.

Dockery, D. W., Pope, C. A., Xu, X., et al. 1993. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 329(24), 1753-1759.

Dons, E., Panis, L. I., Van Poppel, M., et al. 2011. Impact of time–activity patterns on personal exposure to black carbon. Atmos. Environ., 45(21), 3594-3602.

Grana, M., Toschi, N., Vicentini, L., Pietroiusti, A., Magrini, A. 2017. Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 228, 201-210.

Gulliver, J., Briggs, D.J., 2004. Personal exposure to particulate air pollution in transport microenvironments. Atmos. Environ. 38, 1-8.

Hudda, N., Cheung, K., Moore, K.F., Sioutas, C., 2010. Inter-community variability in total particle number concentrations in the Eastern Los Angeles air Basin. Atmos. Chem. Phys. 10, 11385-11399.

Karanasiou, A., Viana, M., Querol, X., Moreno, T., & de Leeuw, F. 2014. Assessment of personal exposure to particulate air pollution during commuting in European cities - Recommendations and policy implications. Sci. Tot. Environ. 490, 785-797.

Kaur, S., Nieuwenhuijsen, M.J., Colvile, R.N., 2007. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments (Review). Atmos. Environ. 41 (23), 4781-4810

Lonati, G., Ozgen, S., Ripamonti, G., Cernuschi, S., & Giugliano, M. 2011. Pedestrian exposure to size-resolved particles in Milan. J. Air. Waste Manag. Assoc. 61(11), 1273-1280

Moore, K., Krudysz, M., Pakbin, P., Hudda, N., Sioutas, C., 2009. Intra-community variability in total particle number concentrations in the San Pedro Harbor Area (Los Angeles, California). Aerosol. Sci. Technol. 43, 587-603

Motta, V., Favero, C., Dioni, L., et al. 2016. MicroRNAs are associated with blood-pressure effects of exposure to particulate matter: Results from a mediated moderation analysis. Environ. Res. 146, 274-281

Panis, L.I., De Geus, B., Vandenbulcke, G., et al., 2010. Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos. Environ. 44(19), 2263-2270

Peters, J., Theunis, J., Van Poppel, M., Berghmans, P., 2013. Monitoring PM10 and ultrafine particles in urban environments using mobile measurements. Aerosol Air Qual. Res. 13 (2), 509-522

Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., Godleski, J.J. 2004. Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation, 109(1), 71-77

Raaschou-Nielsen, O., Beelen, R., Wang, M., 2016. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 87: 66–73

Ragettli, M.S., Corradi, E., Braun-Fahrlander, C., et al. 2013. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes. Atmos. Environ. 77, 376-384

Ragettli, M.S., Ducret-Stich, R.E., Foraster, M., Morelli, X., Aguilera, I., Basaga~na, X., Corradi, E., Ineichen, A., Tsai, M.Y., Probst-Hensch, N., Rivera, M., Slama, R., Künzli, N., Phuleria, H.C., 2014. Spatio-temporal variation of urban ultrafine particle number concentrations. Atmos. Environ. 96, 275-283

Raposo, G., & Stoorvogel, W. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 200(4), 373-383

Rivera, M., Basagana, X., Aguilera, I., Agis, D., Bouso, L., Foraster, M., Medina-Ramon, M., Pey, J., Kunzli, N., Hoek, G., 2012. Spatial distribution of ultrafine particles in urban settings: a land use regression model. Atmos. Environ. 54, 657-666

Rodosthenous, R. S., Coull, B. A., Lu, Q., et al., 2016. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals. Part Fibre Toxicol. 13(1), 13

Schwartz, J., & Marcus, A. 1990. Mortality and air pollution j london: a time series analysis. Am. J. Epidemiol., 131(1), 185-194.

Silibello, C., Calori, G., Brusasca, G., et al. 2008. Modelling of PM10 concentrations over Milano urban area using two aerosol modules. Environ. Modell. Softw. 23(3), 333-343

Song, C., Qu, Z., Blumm, N., Barabási, A.L. 2010. Limits of predictability in human mobility. Science, 327(5968), 1018-1021

Spinazzè, A., Cattaneo, A., Garramone, G., Cavallo, D.M., 2013. Temporal variation of size-fractionated particulate matter and carbon monoxide in selected microenvironments of the Milan urban area. J. Occup. Environ. Hyg. 10, 652-662

Stafoggia, M., Samoli, E., Alessandrini, E., et al. 2013. Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES Project. Environ. Health Perspect. 121: 1026-1033

Steinle, S., Reis, S., Sabel, C.E. 2013. Quantifying human exposure to air pollution-moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Tot. Environ. 443, 184-193

Suárez, L., Mesías, S., Iglesias, V., Silva, C., Cáceres, D.D., Ruiz-Rudolph, P. 2014. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ. Sci. Process. Impact, 16(6), 1309-1317

Tchepel, O., Dias, D. 2011. Quantification of health benefits related with reduction of atmospheric PM10 levels: implementation of population mobility approach. Int. J. Environ. Health. Res. 21(3), 189-200

Van den Bossche, J., De Baets, B., Verwaeren, J., Botteldooren, D., Theunis, J. 2018. Development and evaluation of land use regression models for black carbon based on bicycle and pedestrian measurements in the urban environment. Environ. Modell. Softw. 99, 58-69

Zhu, Y., Fung, D.C., Kennedy, N., Hinds, W.C., Eiguren-Fernandez, A., 2008. Measurements of ultrafine particles and other vehicular pollutants inside a Mobile exposure system on Los Angeles freeways. J. Air Waste Manage. Assoc. 58, 424-434

Zwack, L.M., Paciorek, C.J., Spengler, J.D., Levy, J.I., 2011. Characterizing local traffic contributions to particulate air pollution in street Canyons using Mobile monitoring techniques. Atmos. Environ. 45, 2507-2514


Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Italian Journal of Occupational and Environmental Hygiene

© 2015 IJOEHY eISSN: 2464-8817 Associazione Italiana degli Igienisti Industriali |